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Abstract

The wavelet transform is an analysis method to measure the transient signals instead of the conventional Fourier

analysis, which is difficult to obtain high-definition time–frequency maps for rapidly changing signals. In this paper, we

present a new method for the calculation of instantaneous structural intensity on the beam by using the wavelet transform

and the details of the computational algorithm to obtain structural intensity by the harmonic wavelet transform is

described. By applying this method for the data measured by hammering the beam structure, we confirmed that

instantaneous intensity obtained by using the harmonic wavelet transform is a useful tool for analyzing the propagation of

flexural waves on the beam structure.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

It is difficult to obtain time–frequency maps for rapidly changing transient signals. Thus, the wavelet
transform is applied to the analysis of transient waves propagating in a dispersive medium. The calculation
methods to measure the structural intensity were proposed by Pavic [1] and Verheij [2], respectively, which are
based on the Fourier transform technique. But their calculation methods cannot be applied for measuring
transient structural vibration because they are used for obtaining time-averaged intensity. The wavelet
transform is the recent mathematical technique, which allows us to unfold a non-stationary signal into both
space and scale and it is very promising for analyzing non-stationary signals. Authors proposed the method
for measuring instantaneous intensity of impulsive sound by using the harmonic wavelet transform proposed
by Prof. D.E. Newland in their papers [3,4]. In this paper, we also attempt to apply this wavelet transform
method to obtain instantaneous intensity of structural vibration.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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2. Definition of the structural intensity on the beam by the wavelet transform

2.1. Finite difference approximations of the structural intensity

For a beam, the intensity is transported by shear forces and bending moments shown as follows [5]:

iðx; tÞ ¼ isf ðx; tÞ þ ibmðx; tÞ

¼ � B
q3w
qx3

qw

qt
�

q2w
qx2

q2w
qtqx

� �
, ð1Þ

where isf is the term for intensity due to shear forces, ibm is the term for intensity due to bending moment, B is
the bending stiffness of the beam given by B ¼ E0h3/12(1�s2), and w is the normal displacement of the beam.

By using finite difference approximations given by

w � ðw2 þ w3Þ=2, (2.1)

qw

qx
�

w3 � w2

d
, (2.2)

q2w
qx2
�
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2d2
, (2.3)
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qx3
�

w4 � 3w3 þ 3w2 � w1

d3
, (2.4)

where w1, w2, w3 and w4 are normal displacements at points equally spaced on the beam shown in Fig. 1.
When we let v ¼ _w ( _w: derivative of w), the structural intensity in Eq. (1) can be given by

iðtÞ � �
B
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fv3ðtÞ � 2v2ðtÞ þ v1ðtÞgdt� v2ðtÞ

Z t

�1

fv4ðtÞ � 2v3ðtÞ þ v2ðtÞgdt
� �

, ð3Þ

where vl(l ¼ 1–4) is the surface velocity measured on the beam and d is the separation of them. From this
equation, the structural intensity can be measured by using an equally spaces linear array of accelerometers.

2.2. Error in structural intensity calculation

The time-averaged intensity of the flexural wave becomes /i(x,t)S ¼ Bo0k
3A2 [6] for the sinusoidal signal

given by w(x, t) ¼ A cos(o0t�kx), where A is an amplitude of normal displacement, o0 is an angular frequency
and k is a wavenumber. By using the finite difference approximation given by Eq. (3), the time average of the
1 3 4x

w

Flexural wave

Uniform beam

2

Fig. 1. Schematic diagram of the transducer array for the measurement of structural intensity.
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structural intensity becomes

iðtÞ
� �

¼
2A2Bo0½cosðkdÞ � 1� sinðkdÞ

d3
. (4)

From which, the error in dB of the structural intensity can be estimated as

Error ¼ 10 log10
2½cosðkdÞ � 1� sinðkdÞ

k3d3

� �
. (5)

The error of the intensity estimated from Eq. (5) is shown in Fig. 2. From which, it is seen that the error of the
intensity stays less than 1.5 dB when satisfying kdo1.

2.3. Structural intensity by the wavelet transform

Using finite difference approximation, the structural intensity can be obtained by the Fourier transform
technique. Instead of the Fourier transform technique, we use the wavelet transform to obtain instantaneous
structural intensity given by

W iðs; tÞ ¼ s

Z þ1
�1

iðtÞc�½sðt� tÞ�dt; (6)

where s and t determine the scaling and translation of the mother wavelet and c* represents the complex
conjugate of the mother wavelet function c.

The wavelet transform can be equivalently written by using the Fourier transform as [7]

W iðs; tÞ ¼
1

2p

Z þ1
�1

IðoÞC�
o
s

� 	
expðjotÞdo; (7)

where I(o) and c(o) are Fourier transforms of i(t) and c(t), and o is an angular frequency of the spectrum.
When we let x(t) ¼ dv/dt, the Fourier transform of x(t) can be given by X(o) ¼ joV(o), then Fourier

transform of i(t) becomes

IðoÞ � �
B
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n
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�
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X 4ðoÞ � 2X 3ðoÞ þ X 2ðoÞ
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� �
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where Xl(o)(l ¼ 1�4) is the Fourier transform of acceleration measured on each point on the beam and the
symbol * denotes the convolution of two functions.
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Fig. 2. Error of the structural intensity as a function of kd.
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By inserting Eq. (8) into Eq. (7), the wavelet transform of the structural intensity can be given by

W iðs; tÞ ¼ �
jB

2pd3
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If we suppose i(s, t) ¼ Re[W(s,t)], where Re is the real part of the complex number, the instantaneous intensity
of flexural waves on the beam structure can be calculated.

3. Numerical calculation procedures by using the harmonic wavelet transform

We select the mother wavelet function, which is named harmonic wavelet by Newland [8], shown as follows:

cðtÞ ¼ ðej4pt � ej2ptÞ=j2pt. (10)

As the Fourier transform of cðtÞ can be given by

CðoÞ ¼ 1 ð2ppoo4pÞ

¼ 0 ðotherwiseÞ. ð11Þ

When we let s ¼ 2m, where m is an integer named a level according to Newland [8], which corresponds to the
octave band number (m40),C(o/s) is identically zero outside 2p2mpoo2p2m+1. Then the wavelet transform
of the instantaneous intensity i(s, t) at s ¼ 2m can be given by

ið2m; tÞ ¼
B

2pd3
Im

Z 2p2mþ1

2p2m

X 2ðoÞ
o

n
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n
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o2

� �
expðjotÞdo, ð12Þ

where Im is an imaginary part of the complex number.
According to the Newland’s algorithm [8], this integral calculation can be performed by using the FFT

algorithm shown as in the following procedures:
(1)
 Compute the discrete Fourier transforms of x1(t), x2(t), x3(t) and x4(t) to obtain Xl(n)(l ¼ 1�4),
(n ¼ 0�N�1)), where N is a number of sampling points satisfying NX4, which equals a power of 2.
(2)
 Compute the convolution of x̂lðnÞ ¼ X lþ2ðnÞ=nDo and ŷlðnÞ ¼ ðX 4�lðnÞ � 2X 3�lðnÞ þ X 2�lðnÞ=n2Do2Þ

(l ¼ 0 or 1), where Do ¼ 2pDf (Df ¼ fs/N, fs:sampling frequency) via a cyclic convolution given by

zlðnÞ ¼
XN�1

iþj¼nðmod NÞ

x̂lðiÞŷlðjÞ; (13)

by setting that nDo ¼ 1 at n ¼ 0.

(3)
 Compute z(n) ¼ z0(n)�z1(n).

(4)
 Conduct the inverse discrete Fourier transform (IDFT) of a N/2-length data {z(0), z(1), z(2), y, z(N/2)}

according to the following algorithm:

� First we let w0 ¼ z(0) and w1 ¼ z(1).
� Conduct the 2-points IDFT of {z(2), z(3)} to obtain {w2, w3}.
� Compute 4-points IDFT of {z(4), z(5), z(7)} to obtain {w4, w5, w6, w7}.
� ..
.

� Compute N/4 points IDFT of {z(N/4), y, z(N/2�1)} to obtain {wN/4, y, wN/2�1}.
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� Finally, we let wN/2 ¼ z(N/2).
� Replace, respectively, high N/2�1 components with Hermitian conjugates as

wj ¼ w�N�jðj ¼ N=2þ 1�N � 1Þ. (14)
4.

wav
Imaginary parts of the sequence of {wk} multiplied by B/2pd3 yields the instantaneous intensity of a signal
by the harmonic wavelet transform given by Eq. (12).
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Fig. 3. Grid base for plotting the harmonic wavelet transform (N ¼ 16).
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Finally plot the obtained result w2mþi (i ¼ 0�2m
�1) by using the grid base divided into 2m segments, because

there are 2mwavelets in the unit interval for the octave band, for plotting wavelet amplitude as shown in Fig. 3,
which is the case for N ¼ 16, where number on the vertical axis corresponds the octave band given by
2mDf�2m+1Df (Hz).

By applying this calculation method for the sample signal given by

_wðx; tÞ ¼ A½sgnðt� kxþ �Þ � sgnðt� kx� �Þ�, (15)

where _wðx; tÞ is the surface velocity on the beam at the position (x, t), A is an amplitude of the signal, sgn is a
function defined as sgn(t) ¼ 1(t40), sgn(t) ¼ �1(to0), k is a wavenumber given by k ¼ o/cB, (cB: flexural
wave speed) the structural intensity result can be obtained by using Mathematica 4.2 as an energy density map
shown in Fig 4 for the cases of A ¼ 0.5, the thickness of the beam, h ¼ 5mm, the Young’s modulus,
E0 ¼ 20� 1010N/m2, the Poisson’s ratio, s ¼ 0.3, and mass density, r ¼ 7.8� 103 kg/m3, when we select the
length of space between the accelerometers to be d ¼ 40mm for satisfying kd51.

The wavenumber of the flexural wave can be given by [9]

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2rh

B
f 24

r
. (16)

In this figure, (A) shows the waveform of the sample signal and (B) shows the time–frequency density map.
In Fig. 5, The instantaneous intensities at m ¼ 3 for cases e ¼ 0.01 and e ¼ 0.1 are shown as (A) and (B),
respectively, where the upper figure shows the waveform and the lower figure shows the instantaneous
intensity. From which, it is seen that the intensity of pulse signal can be localized in time by using the wavelet
transform analysis.

4. Instantaneous structural intensity obtained from the data of flexural waves propagating on the beam

4.1. Measurement system of flexural waves propagating on the uniform beam

As shown in the upper figure of Fig. 6, a uniform beam made of stainless steel was used for the experiment,
where the width of the beam is 20mm, its thickness is 5mm, the Young’s modulus, E0 ¼ 20� 1010N/m2, the
Poisson ratio, s ¼ 0.3 and the mass density is r ¼ 7.8� 103 (kg/m3).

Four miniature accelerometers (TEAC, Type 706) were mounted firmly on the beam with the separation of
them to be 40mm and a hammer blow was applied to the free end of the beam by the impulse hammer as
shown in the lower figure in Fig. 6.

The separation of accelerometers were selected to satisfy kdo1 for the frequency band less than
1010 ¼ 1024Hz. The beam was clamped at one end by the vise. The total length from the clamped end to the
free end of the beam was 0.92m.

The accelerometer No.1 is situated at the distance of 0.6m from the free end of the beam. We conducted the
experiment for the uniform beam first and then for the beam with damping layer on both sides with a thickness
of 5mm. A hammer blow was applied to the beam at the tip of the free end in a direction perpendicular to the
beam surface. Signals from accelerometers were amplified and converted to digital signal with the sampling
frequency of 16 kHz. The sampling size of the data for conducting the wavelet transform by the computer was
selected to be N ¼ 8192.

4.2. Calculation results by the harmonic wavelet transform

By using the harmonic wavelet transform algorithm, instantaneous intensity of the beam was calculated for
both cases, which are for the uniform beam and for the beam with damping layers on both sides. Fig. 7 shows
the time–frequency map calculated by the harmonic wavelet transform, where the upper figure is for the time
history of acceleration on each measured point of the beam and the lower figure is for the calculation result by
using the harmonic wavelet transform. In the lower figure, the horizontal axis shows the time in seconds and
the vertical axis shows a band number (wavelet level) of the wavelet transform. From the density map,
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Fig. 5. Calculation results of the instantaneous structural intensity for two different signals, (A) m ¼ 3, e ¼ 0.1, (B) m ¼ 3, e ¼ 0.01.
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multiple reflections of the flexural wave from the boundaries of a finite length system can be observed with
different phase velocities, following the initial impact as intensity components experience alternate their
values. Fig. 8 also shows the time–frequency map obtained for the beam with damping layers. From which,
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Fig. 6. Photo of the stainless beam used for the experiment (upper figure) and the schematic diagram of the experimental setup

(lower figure).
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it is clearly seen that the high frequency progressive wave components are leading the wave group and decays
faster that the lower frequency waves, while the low-frequency components are traveling behind them. Thus, it
is considered that each individual progressive wave component continuing the initial impact propagates with
different speed as predicted by the theory of flexural waves [9].

By introducing the center frequency of the octave band at the level. m given by f ¼
ffiffiffi
2
p
	 2m into the

following formula for the arrival time of the flexural wave T0:

T0 ¼ L 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh

4p2Bf 2

4

s
, (17)

where L is the separation of the excited point and the measured point, the arrival time satisfies the relation
given by T0 / 1=

ffiffiffiffiffiffi
2m
p

.
Fig. 9 shows the instantaneous intensity at the wavelet level 4 and the wavelet level 7, which corres-

ponds to the octave bands, the frequency range of them are 16�32 and 128�256Hz, respectively, for the
uniform beam and the uniform beam with damping layers. From these results, it can be seen that the
progressive impulse flexural wave decays rapidly for higher frequency and higher damping material as
predicted by the theory given by �1= _w 	 d _w=dt ¼ Zo=2 (Z: loss factor), which is the time-rate-decay of
flexural vibration [9]. As the initial instance of the transient signal can be clearly detected, the arrival time
of a flexural wave for each frequency band can be obtained as shown in the Table 1. From which, it can
be shown that the flexural wave at m ¼ 7 arrives 2.8 times faster than the flexural wave at m ¼ 4 for the
uniform beam, that is almost equal to the ratio

ffiffiffiffiffi
27
p

=
ffiffiffiffiffi
24
p
¼ 2:82, predicted from Eq. (17). Similarly, the ratio
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Fig. 7. Time history of the structural vibration at each measuring point and the time–frequency map of the instantaneous structural

intensity obtained by using the harmonic wavelet transform (uniform beam).
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of arrival times for the damped beam becomes 2:6, that is smaller than the undamped case, which
coincides to the theory that the speed of the flexural wave increases with increasing the value of damping
factor [10].

Hence it is seen that flexural waves propagating in the beam structure travel faster at higher frequencies than
lower frequencies as predicted by the theory.
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Fig. 8. Time history of the structural vibration at each measuring point and the time–frequency map of the instantaneous structural

intensity obtained by using the harmonic wavelet transform (uniform beam with damping layers on both sides).
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5. Conclusion

The measurement of the structural intensity for the beam by using the harmonic wavelet transform shows
that flexural waves propagating in the beam structure travel faster at higher frequencies than lower frequencies
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Fig. 9. Instantaneous intensity at the levels 4 and 7, for the uniform beam (a) and the uniform beam with damping layers (b).

Table 1

Arrival time of the flexural wave

Level (a) Arrival time (b) Arrival time

m ¼ 4 0.088 (s) 0.031(s)

m ¼ 7 0.031 (s) 0.012(s)

Tm ¼ 4/Tm ¼ 7 2.8 2.6

T. Musha, T. Kumazawa / Journal of Sound and Vibration 306 (2007) 377–388 387
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as predicted by the theory. From these results, it is considered that the wavelet intensity analysis gives us an
effective tool for the analysis of transient waves on the beam structures.
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